
Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

EPICS V4 Archiver Service and Matlab client
Timo Korhonen

Overview

•ArchiverService
– To access Channel Archiver data using pvAccess RPC
– Written by David Hickin (Diamond)

•Client code to access the ChannelArchiver service from Matlab
– Written by me to

• Have a tool to access the service
• Learn how to write client code

– Used Matlab because
• Matlab is a central tool for our SwissFEL project
• Java API can be directly used
• Quick cycle for testing (scripting)

– Some Qt (C++) code to do the same thing
• At the moment (slightly) less sophisticated
• Not enough time to show in this talk, ask me for a demo if interested

Archive Service

•ArchiverService
– Many sites are still using the Channel Archiver (PSI and Diamond at least)
– Direct access to the data would be valuable
– Implement access to the data as a V4 service
– One of the first services that have been developed and deployed

• There are a few more (RDB service, etc.)
•Basic mode of operation:

– Use the RPC method that pvAccess provides (new in V4)
– Client sends a query to a server, with parameters
– Server fetches the data, packs it up and sends to the client
– Client receives the data, unpacks the structure and (in this case) returns the

data as a Matlab native structure
– The Java API can be used natively in Matlab

• No wrappers in between
• Some conversions between Java structures and Matlab structures

required, however

Anatomy of a RPC (Remote Procedure Call) in V4

•RPC is a pvAccess operation that can take parameters
– In the archive service case:

• Channel to be retrieved
• From <start time> to <end time>

– These parameters are sent to the server as a structure
• The rule is to use the NTURI normative type

http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html#nturi

• The client creates this structure and sends it to server
– Server advertises a channel name that the client connects to

• Basic connection mechanism is similar to channel access:
– Search broadcast, server that has the name, replies, etc.
– After that the differences start....(introspection, etc.)

– Server receives the structure from client and
• unpacks the parameters, fetches the data from archiver
• Packs the data into another normative type structure (NTTable) and

sends
– This will probably change to use a more appropriate structure

– Client receives the data and unpacks it

http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html#nturi

The code...

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

What the user sees...

ArchiveGet call

Unpacking the data

Plotting, etc. or whatever
the user then wants to do
with the data

Let us look inside these
functions

The code...

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

This is just a wrapper
around pvAccess and
pvData calls

Import the Java classes

Create a Matlab structure
for the request

The actual pvAccess
things are here

The request call returns a
NTTable (Java
structure) ; rdpr
This is returned to the
caller

function rdpr = ArchiveGetSimple(pvname, starttime, endtime)
%ArchiveGetSimple get data from archiver service into a pvData structure
% Detailed explanation goes here

import('org.epics.pvaccess.*')
import('org.epics.pvaccess.easyPVA.*')
import('org.epics.pvdata.*')
%
request.scheme='pva';
request.path='SLS-LT'; %hardcode for now - replace later
request.query={'starttime',starttime;'endtime',endtime;'entity',pvname};

%start the EasyPVA factory
easy = EasyPVAFactory.get();
pvr=BuildRPC(request);
% now do the query
rdp=easy.createChannel(request.path).createRPC();
%created an EasyRPC, now connect
rdp.connect();
% do the request. Result is a PVStructure object
rdpr = rdp.request(pvr);
%now the result is in structure rdpr.
end

The code: creating a RPC query structure

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

BuildRPC creates the
NTURI structure for a
query

A bit too long to be
shown on a slide (82
lines of code, with
comments)

-takes data from a matlab
structure

-this routine can be used
for any service
(only specialty here is
how to handle EPICS
times: times have to be
converted from the
EPICS epoch to times
that Matlab understands.)

function pvr = BuildRPC(request)
%BuildRPC Build a PVStructure for making a RPC call (EPICS 4)
% pvr = BuildRPC(request)
% request is a Matlab struct that contains the query data
% namely: scheme, path and query
% scheme: pva
% path: the service name (EPICS 4 PV name)
% query: query parameters, service-dependent
% pvr is the NTURI PVStructure
% For RPC queries, the NTURI normative type is used.

if(isfield(request,'scheme') && isfield(request,'path') &&
isfield(request,'query'))

 % uses pvdata
 import('org.epics.pvdata.*')
 %convenience number for possible time calculations
 epicsepoch = datenum(1990,1,1);
…<code continues>

The code: data unpacking

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

Another helper routine:
unpackNTTable

-again generic, not
specific to any service

-returns the data in a
matlab structure for easy
manipulation (plotting,
calculations, etc.)

About 60 lines of code
(with comments, 40
without)

Some screenshots

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

Beginnings of a GUI (matlab)

Fetch the data from archive and
plot

This is still at a primitive state,
but nevertheless fun to play with

Define a channel, or select one
from a predefined set
*the idea is to get the channel
names from a service – not
implemented yet

Define start and end times

(demo would be nice, but using
Matlab remotely can be risky –
and slow)

Some screenshots

structure NTURI
 string scheme
 string authority : opt
 string path
 structure query : opt
 {string | double | int }0+
 {<field-type> <field-name>}0+

Some timings:

-get one day's data (beam current): 0.15 seconds
-one week's data: 1.5 seconds
-one month's data (81677 values): around 7 .5 seconds

-most of the time is Matlab structure manipulation (I have not profiled the code, however)

Summary

•ArchiverService
– Works very well (stable, fast)
– Needs still some extensions (add waveforms, display information)

•Programming with V4 pvData, pvAccess
– There is a learning curve, can be steep at times
– But: when you get familiar with the programming, it is very efficient and

productive
– Opens up a lot of new possibilities
– Normative types are a key aspect: even if they do not look very sexy in the

beginning, you will eventually love them :-)
•Services programming

– Once you have learned how to do one, creating more services becomes easy
– This is a very efficient way of data integration

• One set of tools for all data
• Combining data from different sources becomes easy

•Final disclaimer
– The code shown is from a beginner – anybody interested is welcome to have

it, but it is by no means production-ready. Use at your own risk.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

